
LA-UR-19-24736
Approved for public release; distribution is unlimited.

Title: LANSCE Diagnostic Robot Localization

Author(s): Montoya, Lucas Sigfredo

Intended for: Master thesis manuscript

Issued: 2019-05-22

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

i

 Lucas Montoya
 Candidate

 Mechanical Engineering
 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 Christopher Hall , Chairperson

 Svetlana Poroseva

 Meeko Oishi

ii

LANSCE DIAGNOSTIC ROBOT LOCALIZATION

by

Lucas Montoya

B.S., Mechanical Engineering, New Mexico State University, 2014

THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

Mechanical Engineering

The University of New Mexico
Albuquerque, New Mexico

May 2019

iii

Acknowledgements

I would like to thank my mentor James Sedillo for his untiring support throughout

this whole project, facilitating a good working environment and providing me with

valuable insight throughout my research. David Bonal of National Instruments

deserves a thanks as he graciously provided me with the LabVIEW robotics

module, enabling the capability for simulation. Ray Roybal for providing me with

CAD files of the beam tunnel for simulating the robot in. To Los Alamos National

Laboratory for allowing me to work on this project during my internship, and

everyone there who provided assistance whenever I needed it. Finally, I would

like to thank Professor Christopher Hall for his advisement during the entire

process.

iv

LANSCE Diagnostic Robot Localization

Lucas Montoya

B.S., Mechanical Engineering, New Mexico State University, 2014

M.S., Mechanical Engineering, University of New Mexico, 2019

Abstract

Los Alamos Neutron Science Center (LANSCE) operates a linear particle

accelerator (LINAC) that is used for a number of scientific research projects. Due

to the presence of harmful radiation, researchers are not allowed in the beam

tunnel during operation. Since the beam tunnel is inaccessible, an autonomous

mobile robot is to be developed and deployed in the tunnel, monitoring the

accelerator during operation. The robot will present real time data for operators

and scientists from sensors such as a video camera, thermal camera,

microphones, and muon detectors; allowing for beam diagnostics previously

unavailable.

Localization is a fundamental step in autonomous navigation of mobile robots,

answering the “where am I” question. For this project, an Extended Kalman Filter

(EKF) algorithm is implemented as a positional estimator. The EKF relies on an

odometric motion model to predict the robot’s position and LIDAR measurement

data to update the robot’s position. The measurement model is based on

v

features extracted from the LIDAR point cluster using the Split-and-Merge

algorithm, and the nearest neighbor algorithm associates the features to an a

priori feature map of the beam tunnel. The predicted and measured positions are

then joined using a weighted value by means of the Kalman gain. The

effectiveness of this localization technique is demonstrated using the LabVIEW

robotics simulator.

vi

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Accelerator Environment . 3

1.2 Research Overview . 4

1.3 Outline of Thesis . 4

2 Literature Review 7

2.1 Mobile Robot Localization . 7

2.2 Sensors . 8

2.3 Feature Extraction Methods . 10

2.4 Data Association . 12

2.4 Summary . 13

3 Vehicle Model 14

3.1 Chassis . 14

3.1.1 Sensors . 15

3.1.1.1 LIDAR . 15

3.1.1.2 Encoders . 18

3.2 Inverse Kinematics . 18

3.2.1 Constraints . 19

3.2.2 Model . 20

3.3 Odometry . 21

 3.4 Summary . 22

vii

4 Landmark Acquisition 23

 4.1 Landmark Selection . 23

 4.2 Line Extraction . 24

 4.2.1 Successive Edge Following . 25

4.2.2 Split-and-Merge . 27

 4.3 Feature Extraction . 30

 4.3.1 Corner Extraction . 30

4.3.2 Beam Support Structure Feature Extraction 31

4.3.3 Wall Feature Extraction . 33

4.4 Summary . 35

5 Localization 36

5.1 Extended Kalman Filter . 36

 5.1.1 Initialization . 38

5.1.2 Motion Update . 38

5.1.3 Data Association . 40

 5.1.3.1 Individual Compatibility Nearest Neighbor . . . 40

 5.1.3.2 Compatibility Optimization 42

 5.1.4 Measurement Update . 43

 5.2 Summary . 44

6 Simulation 45

6.1 LabVIEW Robotics . 45

6.2 Simulation Results . 47

viii

7 Conclusion 50

7.1 Summary . 50

7.2 Future Work . 51

References

Appendix A: Localization Flowchart 52

ix

List of Figures

1.1 Accelerator Tunnel X-Section . 3

2.1 Line Extraction Algorithm Performance . 11

3.1 Robot Chassis CAD Model . 14

3.2 Hokuyo URG-04LX-UG30 LIDAR . 16

3.3 LIDAR Range-finding Schematic . 17

3.4 Kinematic Diagram . 20

4.1 Raw LIDAR Point Cloud . 25

4.2 Successive Edge Following Data Point Post Process 27

4.3 Split-and-Merge Procedure . 28

4.4 Split-and-Merge Line Segments . 29

4.5 Simulated Beam Support Structure Feature 32

4.6 Beam Support Structure Line Segment Geometry 33

4.7 Abbe Error Illustration . 34

5.1 Extended Kalman Filter Block Diagram . 37

6.1 LabVIEW Robotics Simulation Front Panel 46

6.2 Positional Error . 48

6.3 Heading Error . 49

6.4 Ground Truth vs. Estimated Tracked Position 49

x

List of Abbreviations

CAD Computer Aided Design

EKF Extended Kalman Filter

ICNN Individual Compatibility Nearest Neighbor

LANSCE Los Alamos Neutron Science Center

LIDAR Light Detection and Ranging

LINAC Linear Accelerator

SEF Successive Edge Following

SLAM Simultaneous Localization and Mapping

TOF Time-of-Flight

1

Chapter 1

Introduction

Mobile robotics have long been used in hazardous situations with an operator

controlling the robot remotely, acting as eyes and ears to an uninhabitable

environment. A trend has been moving towards fully autonomous robots being

used in hazardous environments, and to be able to realize full autonomy, it is

necessary to self-localize within that environment.

Mobile robotics self-localization asks the question of “where am I”, which is the

answer our research aims to solve in order for the robot to successfully navigate

and complete its designated mission. An overview of the sensors used, robot

model, data acquisition, localization strategy, and the simulation model will be

presented.

1.1 Background

The Los Alamos Neutron Science Center (LANSCE) user facility is home to an

800 MeV linear accelerator (LINAC), supplying multiple experimental areas with

intense pulsed proton beam travelling 84 percent the speed of light. With the

accelerator, LANSCE supports many different programmatic and scientific needs

for defense and civilian research. With over a thousand user visits to the facility

annually [1], and the production of medical isotopes used for cardiac imaging for

2

over 30,000 patients a month [2], it is crucial to ensure reliable operation of the

accelerator.

There are numerous systems working to keep the machine running during

production that frequently fail and cause unnecessary downtime. Currently there

are limited diagnostic tools used to monitor the status of these systems. It is of

interest to gather as much information as possible to better predict and detect

failures and help facilitate tuning of the beam during startup. Predictors of failure

include elevated radiation levels, which indicate beam spill, and excess heat

given off by components along the beam line, both of which can be measured

using the proposed robot.

Because of the radiation produced by proton interactions, it renders the beam

tunnel inaccessible by personnel during production, hindering direct

measurements that can be taken to provide beam status. With the use of a

mobile robot in the tunnel, measurements can be taken safely from a remote

location. To avoid the requirement of an operator taking data on a regular

schedule, it makes sense to design the robot to be fully autonomous, reporting its

findings after each tour of the beam tunnel.

To achieve full autonomy a mobile robot must first be capable of self-localization.

It is important so that it can navigate the tunnel accurately, providing reliable data

from each measurement.

3

1.1.1 Accelerator Environment

The linear accelerator tunnel is ¾ miles long and underground which houses the

accelerator structures and supporting equipment. A cross section diagram of the

tunnel can be seen in figure 1.1, depicting where the robot is deployed relative to

the accelerator inside the tunnel.

Figure 1.1: Accelerator Tunnel X-Section

Because of the radiation and location of the accelerator underground, there are

many design considerations to account for to help mitigate or eliminate potential

issues. These issues will be discussed in later sections as they pertain to

different aspects of the robot and in the localization strategy.

Accelerator

Robot

4

1.2 Research Overview

The purpose of this research is to develop a localization strategy for a differential

drive robot in a known indoor environment with sparse landmark features. To

accomplish this, the Extended Kalman Filter (EKF) is employed. The EKF is a

recursive algorithm that relates the current state to the previous estimate of the

state using the state transition and measurement models. Because neither the

state transition or measurement models are linear, Jacobians are used to

linearize them such that Gaussian approximation is maintained. [3]

To implement the EKF properly, the kinematics of the robot must be evaluated to

develop the state transition model. Landmark acquisition is developed for the

measurement update, and data acquisition algorithms are developed to minimize

spurious measurements.

The majority of this work is developed and tested using the LabVIEW Robotics

Simulator environment as the beam tunnel has access requirements severely

limiting real-world testing opportunities. The tunnel and robot chassis are

modeled and imported into the robotics simulator to produce accurate results

resembling real world operation in the tunnel.

1.3 Outline of Thesis

In chapter 2 the literature studied is reviewed. Articles establishing sensor

selection, along with the feature extraction and data association techniques given

5

different applications is covered. An overview of localization strategies is

presented, with special attention given to the EKF localization technique.

The vehicle model of the robot is covered in chapter 3. The chassis and sensors

selected are described. Kinematics equations of a rigid differential drive robot are

formulated and expressed in vector form. Odometry is established using the

kinematic model and encoders.

Landmark acquisition is addressed in chapter 4, which makes use of multiple

algorithms to deduce sensor data into something useful. Line extraction is

performed utilizing successive edge following and Split-and-Merge algorithms.

Landmarks such as corners, walls, and beam structures are then determined

from the extracted line geometries.

In chapter 5, the Extended Kalman Filter is discussed, and is presented in three

segments. The prediction stage is first, and is based on the motion model of the

robot. The next is the measurement update step, which is based on the

measurement model, providing corrections to the state estimation and error

covariance based on sensor observations. Data association ties the two together,

in the form of the nearest neighbor algorithm, utilizing shared matrices comparing

the measured landmarks to the map of the beam tunnel.

In chapter 6 the LabVIEW Robotics simulator is reviewed. The beam tunnel and

robot are modeled and imported into the simulator to best mimic conditions seen

in the tunnel to provide an accurate representation of real obstacles. Results are

6

then gathered and analyzed after collecting robot tracking data as it traverses the

tunnel in the simulation.

A summary of the research is presented in chapter 7, along with future plans for

the project beyond this thesis.

7

Chapter 2

Literature Review

In this chapter an overview of the process and reasoning behind the decision to

use the Extended Kalman Filter (EKF) as the state estimator is examined. In

conjunction with the EKF, sensors on the robot are assessed for their viability in

the system. Supporting algorithms such as line extraction and data association

are also reviewed for their integration into the localization strategy presented.

2.1 Mobile Robot Localization

There are numerous localization strategies that can be implemented, as was

discussed by Jensfelt [4]. Of these approaches, the Extended Kalman Filter

(EKF) is the most advantageous due to the fact that the EKF is reliant on a

known map, or hypothesis of landmarks in the environment. Since a map of the

beam tunnel can be defined from CAD drawings, a mapping algorithm such as

the Simultaneous Localization and Mapping (SLAM) techniques [5, 6] are not

necessary.

The EKF is a landmark based localization algorithm that fuses information from

multiple sensors, such as the LIDAR and encoder odometry data. The LIDAR

measurement model and encoder odometry model are linearized as they are

non-linear, to provide Gaussian estimates through the Kalman filter. [7]

8

The EKF consists of two major steps in the estimation of the robot state. The first

step is predicting the robot state obtained from odometric data. Odometry is the

measurement of distance travelled using data obtained from sensors, specifically

encoders in our application, which are coupled to the motors. Motor rotation

measurements can then be used to calculate the motion of the robot using the

kinematic model. The prediction is also used to estimate where the landmarks

should be based on the aforementioned odometry. When a landmark is

observed, the difference is taken between the observed and predicted position,

referred to as the innovation [5]. Because odometry is notorious for producing

error, a higher confidence is placed upon the observation model from the LIDAR

sensor. The Kalman gain is employed to weigh the observation data as more

reliable [8, 9]. The EKF is recursive such that multiple observations can be

processed and only the last estimate is necessary to provide the current state

estimate.

2.2 Sensors

There are several types of sensors used on mobile robotics for the purpose of

localization. Types of sensors used in mobile robotics range from GPS, magnetic

compasses, dead reckoning, guide-path-following, and time-of-flight (TOF) range

finding sensors [10]. The selection process of the various types of sensors are

reviewed, examining the feasibility and integration into the robot system.

9

Given the robot’s environment, some sensors are not a viable option. The tunnel

is underground and encased in concrete, thus GPS is not an option as the signal

cannot penetrate into the tunnel. High powered magnets are used to focus the

proton beam, which would distort magnetic compass readings rendering its data

unreliable. During accelerator maintenance periods, equipment is rearranged

which can obstruct guide paths and limit the flexibility of the robot to be able to

take data effectively given different missions through its use. TOF and dead

reckoning sensors are left as practical options for the robot.

Sensors that measure the time taken for emitted energy to travel to a target and

reflect back is considered to be of the TOF family of ranging sensors [10], such

as light detection and ranging (LIDAR) or ultrasonic sensors. Given the resolution

and accuracy that LIDAR can provide over ultrasonic sensors, the LIDAR was

selected as the primary measurement device.

In addition to the LIDAR, the motor’s magnetic encoders are incorporated to aid

in localizing the robot; providing necessary data for dead reckoning

measurements. The magnetic encoders use Hall Effect sensors that pick up the

presence of a ferrous metal gear tooth. With each passing tooth, a count can be

made that relates to an angular displacement of the motors. Advantages of using

a magnetic encoder include durability to vibrations caused by robot motion [11].

The disadvantage is that there is no way to determine direction since it is not a

quadrature encoder. The sensors best fitting for this project are TOF and dead

reckoning, due to environmental constraints, range, and the accuracy necessary

for localization.

10

2.3 Feature Extraction Methods

The selected feature extraction method is reliant on the LIDAR sensor point

cloud output. From the LIDAR point cloud, geometries can be extracted that

represent the environment accurately. Nguyen et al. details many of the various

methods to extract features from the environment [12]. Through the comparisons

made from Nguyen’s research, an effective feature extraction strategy was

developed. Nguyen describes employing a clustering algorithm to filter out noisy

points and segments the points into adjacent clusters before implementing the

various line extraction techniques known as Successive Edge Following (SEF).

To further understand the SEF, Siadat et al. [13] described the algorithm, and

performed a comparison between the SEF and other segmentation methods in

different environment representations such as complex and structured

indoor/outdoor environments. Since the beam tunnel best represents a structured

indoor environment, those results are the most applicable. In Siadat’s research

the SEF excelled in both computational time and in reducing the amount of error.

The SEF algorithm segments points into contiguous clusters by taking the

distance between adjacent points and comparing it to a threshold distance. If the

Euclidean distance between adjacent points is greater than the threshold, the

point cluster is segmented. However, in using LIDAR, the distance between

adjacent points will be greater the further the sensed object is due to the

magnification of distance from angular measurements. Yan Bu et al. [14] solve

this problem by incorporating an adaptive threshold which is reliant on the mean

polar radius of the point cloud, and the angle between adjacent points.

11

In Nguyen’s research [12] the most successful algorithm for defining line

segments was the Split-and-Merge algorithm, also known as the Ramer-

Douglas-Puecker or iterative end point algorithm [15]. The data was taken in a

structured indoor environment. The Split-and-Merge algorithm performed the

quickest and provided the most reliable and precise data as can be seen in

Figure 2.2.

Figure 2.1: Line Extraction Algorithm Performance by Nguyen et al [12]

Split-and-merge is a well-known and widely used recursive algorithm that takes

the first and last points from a cluster and calculates the furthest perpendicular

distance point in the cluster from the line segment. If the perpendicular distance

is greater than a threshold distance, the algorithm will split the cluster in two and

continue recursively until no more splits are made [12, 16, 17]. From the Split-

and-Merge we are left with only the line segments as perceived by the LIDAR.

12

2.4 Data Association

Between the map and observation model of the robot, we must determine which

landmark the observed feature corresponds to. Cooper [18] performed a

comparison of various data association techniques in EKF-SLAM applications,

most notably the Individual Compatibility Nearest Neighbor (ICNN) algorithm,

which shares components with the EKF.

The ICNN is based on establishing the compatibility between an observation and

landmarks using Mahalonobis distance. Mahalonobis distance is the distance of

an observation from a distribution set [19].

𝐷𝐷𝑀𝑀2 = (�⃑�𝑥 − �⃑�𝑦)𝑇𝑇𝑆𝑆−1(�⃑�𝑥 − �⃑�𝑦) (2.1)

Where �⃑�𝑥 and �⃑�𝑦 are random vectors, and S is the associated covariance. In this

definition the Mahalonobis distance is also known as the generalized squared

interpoint distance, and describes a similarity measure [20]. In our case we have

observations and the landmark map as the vectors. The ICNN deems the pairing

with the smallest Mahalonobis distance as compatible if it is below a Chi-Squared

distribution confidence level threshold criterion as the Mahalonobis follows a Chi-

Squared distribution. Because ICNN is a greedy algorithm [21], never

reevaluating a pairing with a more compatible landmark, an additional function

will be developed to ensure we are associating the correct landmark.

13

2.5 Summary

A review of localization strategies and associating topics has been presented,

from which a strategy can be derived to suit our needs. It has been demonstrated

that while mobile robot localization has been a topic of focus, there are still faults

of various approaches, such as EKF divergence, or misassociations of data

association techniques that have been investigated before implementation.

14

Chapter 3

Vehicle Model

In this chapter we discuss the vehicle model, which includes the chassis,

sensors, inverse kinematics, and odometry. The first two sections provide the

hardware specifications, with the last two describing the motion using inverse

and forward kinematics.

3.1 Chassis

The chassis used in the simulation is a Dr. Robot Jaguar Lite chassis, a tracked

mobile robot platform, equipped with 24V DC motor actuating each track and

integrated magnetic encoders [22]. The chassis is modeled in SolidWorks and

imported into the LabVIEW robotics simulator as shown in figure 3.1.

Figure 3.1: Robot Chassis CAD Model

15

The Dr. Robot platform was inherited from a previous project [23] and is made for

rugged outdoor terrain. Due to the rugged terrain design of the robot, the paddled

tracks induce vibrations into the chassis causing some slipping, adding error to

the odometry model.

3.1.1 Sensors

In order to achieve localization, the robot needs to be provided with sensors

suitable for its environment. It is crucial the sensors are selected appropriately so

we can detect the robot’s surroundings accurately and repeatedly with as little

error as possible. In this section we discuss the sensors employed to accomplish

localization and why the sensors used were selected.

3.1.1.1 LIDAR

In order for the robot to localize itself, it needs a way to sense the environment

around it. Hokuyo URG-04LX-UG01 LIDAR sensor was selected to be used due

to its small size and device driver support provided in the LabVIEW robotics

simulator.

16

Figure 3.2: Hokuyo URG-04LX-UG30 LIDAR [24]

The Hokuyo LIDAR sensor has a scan angle of 240° and angular resolution of

0.36°, which gives us 667 data points per scan. The sensing range of the sensor

is 4 meters with an accuracy of 3% of the detected distance and a resolution of

1mm. The sensor performs scans at 10 Hz, which is fast enough, relative to the

robot velocity, that it doesn’t miss potential obstacles [24].

LIDAR determines range by measuring the phase shift between the emitted laser

signal, and the reflected signal. Because the laser possesses the properties of

light, it also obeys the formula for light as shown in Equation 3.1, where c is the

speed of light (meters/second), lambda is the wavelength (meters), and f is the

frequency (Hertz).

𝑐𝑐 = 𝜆𝜆𝜆𝜆 (3.1)

The laser is transmitted at a known frequency, and the speed of light is constant,

thus the wavelength can be found. The wavelength is necessary to determine the

17

distance D in meters, travelled by the laser signal as shown in Equation 3.2,

where 𝜃𝜃 is the phase difference between the transmitted laser and reflected laser

signals. [25]

𝐷𝐷 = 𝜆𝜆
4𝜋𝜋
𝜃𝜃 (3.2)

For the LIDAR to perform a scan, the laser is pulsed onto a rotating mirror. Each

reflected pulse represents a point in the scan. LIDAR range-finding schematic is

shown in figure 3.3.

Figure 3.3: LIDAR Range-finding Schematic [25]

The LIDAR sensor was simulated in the LabVIEW robotics module as if the

hardware were present, utilizing the sensor’s communication protocol SCIP2.0 to

acquire data scans. Software was available through the robotics module,

although some adjustments to the code were necessary to obtain the 10 Hz

scanning frequency.

18

3.1.1.2 Encoders

Using the LabVIEW robotics simulator, absolute encoders are provided, that

outputs the shaft position in radians, from which the motion is deduced by taking

the change of position as opposed to a count. With each angular difference, an

angular velocity is obtained, which can be related to a robot body velocity given

the gear ratio and cog radius. The kinematic model is to be covered in the

following section 3.2.

In practice incremental rotary magnetic encoders are used, one mated to each

DC motor to provide information regarding the robot motion. Given that these

encoders are not quadrature, direction is not inherently known from the device,

and will be assumed based on the control input; however within the simulation it

was not an issue.

3.2 Inverse Kinematics

The main goal of the inverse kinematics is to transform the desired robot frame

velocities to motor angular velocities. The equations that describe the system are

derived from Kelly’s constrained kinematics for mobile robots [26]. LabVIEW

robotics module software provides built in functions to accomplish the kinematic

model, but a quick overview is presented.

19

3.2.1 Constraints

Differential drive motion is characterized by two non-holonomic constraints and is

derived by making two assumptions. The first constraint is a pure rolling

condition, which means that each track can roll forward or backward in the

direction of the track velocity without slipping against the floor contact surface.

The track velocity can be calculated as shown in Equation 3.3, where r is the cog

radius, �̇�𝜑 is the angular velocity, and v is the track velocity [27].

�
𝑣𝑣𝑅𝑅
𝑣𝑣𝐿𝐿� = �

𝑟𝑟�̇�𝜑𝑅𝑅
𝑔𝑔
𝑟𝑟�̇�𝜑𝐿𝐿
𝑔𝑔

� (3.3)

The second non-holonomic constraint is that the tracks cannot move laterally,

meaning that �̇�𝑥𝑟𝑟 is always zero in the local robot frame. The matrix form is shown

in Equation 3.4 as derived by Kelly [26].

�̇�𝑥𝑟𝑟 = [sin 𝜃𝜃 − cos 𝜃𝜃 0] �
�̇�𝑥
�̇�𝑦
�̇�𝜃
� = 0; (3.4)

The local frame of the vehicle is assumed to be located in the center of the

tracks, which corresponds to the center of the robot chassis, and the

instantaneous center of curvature (ICC) when turning in place. No complex

maneuvers are used in the simulation; only one velocity can be applied at a time,

so this assumption will suffice.

20

3.2.2 Model

The purpose of the robot kinematic model is to determine the motor velocity

setpoints as a function of the desired robot frame velocity.

(𝜑𝜑�̇�𝑅 ,𝜑𝜑�̇�𝐿) = 𝜆𝜆(�̇�𝑥𝑟𝑟 , �̇�𝑦𝑟𝑟 , �̇�𝜃𝑟𝑟 ,𝑔𝑔, 𝑟𝑟, 𝑙𝑙) (3.5)

where 𝜑𝜑�̇�𝑅 and 𝜑𝜑�̇�𝐿 are the motor angular velocities, �̇�𝑥 is the lateral velocity, �̇�𝑦 is the

forward velocity, �̇�𝜃 (or 𝜔𝜔) is the angular velocity in the robot frame, 𝑔𝑔 is the gear

ratio, 𝑟𝑟 is the track cog radius, and 𝑙𝑙 is the track seperation distance.

Figure 3.4: Kinematic Diagram

Inverse kinematics will be used to convert the local robot frame velocities to the

track velocities as shown in Equation 3.6 as derived by Kelly [26].

21

�
𝑣𝑣𝑅𝑅
𝑣𝑣𝐿𝐿� = �

�̇�𝑦𝑟𝑟 + �̇�𝜃𝑟𝑟
𝑙𝑙
2

�̇�𝑦𝑟𝑟 − �̇�𝜃𝑟𝑟
𝑙𝑙
2

� = �
1 𝑙𝑙

2

1 − 𝑙𝑙
2

� �
�̇�𝑦𝑟𝑟
�̇�𝜃𝑟𝑟
� (3.6)

The motor angular velocities can then be related to the track velocities by

rearranging Equation 3.3, thus producing Equation 3.7.

��̇�𝜑𝑅𝑅�̇�𝜑𝐿𝐿
� = �

𝑔𝑔 𝑣𝑣𝑅𝑅
𝑟𝑟

𝑔𝑔 𝑣𝑣𝐿𝐿
𝑟𝑟

� (3.7)

The calculated motor angular velocity can then be input into the motor to achieve

the desired robot chassis velocity.

3.3 Odometry

Odometry is the estimate of distance travelled by the summation of track

displacement at each time step. To achieve odometry, a rotary encoder is mated

to the motor, and measures the amount of rotation experienced by the motor.

Incremental encoders are typical and output a count value, but in the simulation

absolute encoders are employed, providing the angular position. The

displacement of each track is calculated as shown in Equation 3.8, where r is the

cog radius, 𝜑𝜑 is the angular position of the motor, and g is the gear ratio. [26]

�∆𝑠𝑠𝑟𝑟∆𝑠𝑠𝑙𝑙
� = �

�𝑟𝑟𝜑𝜑𝑟𝑟
𝑔𝑔
�
𝑛𝑛
− �𝑟𝑟𝜑𝜑𝑟𝑟

𝑔𝑔
�
𝑛𝑛−1

�𝑟𝑟𝜑𝜑𝑙𝑙
𝑔𝑔
�
𝑛𝑛
− �𝑟𝑟𝜑𝜑𝑙𝑙

𝑔𝑔
�
𝑛𝑛−1

� (3.8)

In order to convert displacement to the change in Cartesian coordinates the

displacement and heading change are calculated in Equations 3.9 and 3.10.

22

∆𝑠𝑠 = ∆𝑠𝑠𝑟𝑟+ ∆𝑠𝑠𝑙𝑙
2

 (3.9)

∆𝜃𝜃 = ∆𝑠𝑠𝑟𝑟− ∆𝑠𝑠𝑙𝑙
2𝑙𝑙

 (3.10)

With the change in displacement and heading, the change in Cartesian

coordinates can be calculated as shown in Equation 3.11. [28]

�
∆𝑥𝑥
∆𝑦𝑦
∆𝜃𝜃
� =

⎣
⎢
⎢
⎢
⎡∆𝑠𝑠 ∗ cos �𝜃𝜃 + ∆𝜃𝜃

2
�

∆𝑠𝑠 ∗ sin �𝜃𝜃 + ∆𝜃𝜃
2
�

∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙
2∗𝐿𝐿 ⎦

⎥
⎥
⎥
⎤
 (3.11)

Since the LIDAR sensor is not mounted over the instantaneous center of rotation

of the robot, but offset in the y-axis, it has to be compensated. In order to

compensate, the heading of the robot is tracked such that the position can be

calculated as if the LIDAR were on an arm rotating about the instantaneous

center of rotation (ICR) as shown in Equation 3.12, where d is the distance of the

offset in the y-axis.

�
𝑥𝑥
𝑦𝑦
𝜃𝜃
� = �

𝑥𝑥𝑛𝑛−1 + ((𝑑𝑑 cos 𝜃𝜃)𝑛𝑛 − (𝑑𝑑 cos 𝜃𝜃)𝑛𝑛−1)
𝑦𝑦𝑛𝑛−1 + ((𝑑𝑑 sin𝜃𝜃)𝑛𝑛 − (𝑑𝑑 sin𝜃𝜃)𝑛𝑛−1)

𝜃𝜃
� (3.12)

3.4 Summary

With the chassis and sensors, we now have a platform to maneuver and sense

the surroundings. Given the chassis we were able to model the kinematics of the

robot and now have the equations to give us corresponding motor velocity values

given the desired robot frame velocities.

23

Chapter 4

Landmark Acquisition

For localization to be plausible, landmarks must be present in the environment, to

be used as references for the robot to reference its position when observed.

Landmarks are geometric features in the environment that can be easily

observed and distinguished such as walls, corners, or static objects in the room.

Landmarks must also be capable of being extracted from the LIDAR point cloud

repeatedly and accurately.

Landmark acquisition is composed of three major sections. The first describes

what constitutes a valid and re-observable landmark. The second describes how

the point cloud data points are transformed into meaningful line segments. Lastly,

line geometries are evaluated to identify features as potential landmarks from the

environment, known as feature extraction.

4.1 Landmark Selection

Landmarks are features in the environment that can be distinguished repeatedly

no matter the orientation of the robot. Landmarks are used by the robot to

localize itself within its environment, serving as known locations to reference.

Choosing the correct landmarks for localization is crucial, and given the beam

tunnel floor plan and surroundings, there are few features that can be extracted.

24

Major factors in considering landmarks include repeatability, accuracy,

uniqueness, and frequency; too few landmarks can cause the robot to diverge if

error accumulates between landmark observations. Too many can cause

misassociations from one landmark to the next. [5]

Beam structures, corners, and the straight walls of the beam tunnel can all serve

as static landmarks, can be seen repeatedly, can be accurately extracted, and

are frequent enough to prevent the localization strategy from diverging. The

beam structures are I-beams that support the beam pipe and associated

equipment, and because of their unique shape, differentiating them from the rest

of the tunnel is possible. Corners are unique and can be extracted by checking

orthogonality and close proximity of the line segments to each other, although

they are sparse in the tunnel. The tunnel wall can be used for maintaining the

bearing of the robot, which in the extended distance covered in the tunnel, can

amount to significant error.

4.2 Line Extraction

To define the observations of features as potential landmarks, we must first

convert the LIDAR point cloud into more useful data. Given the landmark

selections made, their geometries can be defined by lines, thus the LIDAR point

cloud is converted into line segments that can then be evaluated as landmark

observations. A typical raw LIDAR scan, with the sensor centered at the origin,

can be seen in Figure 4.1.

25

Figure 4.1: Raw LIDAR Point Cloud

Prior to processing the data, extraneous LIDAR points are removed to minimize

complexity. The Successive Edge Following (SEF) algorithm is then performed to

segment the data point cloud into smaller contiguous clusters based on distance

differences from point to adjacent point. The Split-and-Merge algorithm is then

employed to split segments further, should the perpendicular distance from the

first and last points deviate too far. If not, then the algorithm will merge all the

points into a single, two-point line segment. These algorithms are described in

the following sections 4.2.1 and 4.2.2.

4.2.1 Successive Edge Following

The Successive Edge Following (SEF) algorithm segments the LIDAR point

cloud into contiguous clusters of points based on a Euclidean distance threshold

between adjacent points [14]. Since the LIDAR output is in polar coordinate form,

26

the data is converted into SI units and transformed from polar to Cartesian,

enabling us to calculate Euclidean distance.

𝑥𝑥 = 𝑟𝑟 ∗ cos 𝜃𝜃 (4.1)

𝑦𝑦 = 𝑟𝑟 ∗ sin 𝜃𝜃 (4.2)

The improved SEF, as described by Yan [16], incorporates an adaptive threshold

distance for segmentation. Yan’s method is preferable as the distance between

adjacent points becomes greater the further the points extend from the LIDAR.

The adaptive threshold distance ∆𝐷𝐷 is deduced from the mean of the range of

the scan data as shown in Equation 4.3 and the angle between points k, which is

a constant. The adaptive threshold is formulated as shown in Equation 4.4.

�̅�𝑟 = ∑ 𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

; (4.3)

∆𝐷𝐷 = 𝑘𝑘�̅�𝑟 (4.4)

Each consecutive point in the data set is iterated through, calculating the

Euclidean distance between adjacent points as shown in Equation 4.5. That

distance is compared to the adaptive distance threshold ∆D Equation 4.6.

𝐷𝐷(𝑖𝑖, 𝑖𝑖 + 1) = �(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖+1)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖+1)2 (4.5)

𝜆𝜆(𝑘𝑘; 𝑗𝑗; 0,1) = �𝐷𝐷
(𝑖𝑖, 𝑖𝑖 + 1) < ∆𝐷𝐷; [𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖], 𝑗𝑗 + 1
𝐷𝐷(𝑖𝑖, 𝑖𝑖 + 1) ≥ ∆𝐷𝐷; 𝑘𝑘 + 1, 𝑗𝑗 = 0 (4.6)

If the distance between adjacent points is greater than the adaptive threshold,

the cluster is segmented from the point cloud. [14]

27

Figure 4.2: Successive Edge Following Data Point Post Process

The resulting segmentation from the SEF can be seen in figure 4.2, where each

cluster of points can be differentiated by color.

4.2.2 Split-and-Merge

 Split-and-merge is a Nlog(N) complex recursive algorithm [12]. Given the output

from the SEF is an array of point clusters after segmentation, Split-and-Merge

processes each set of points individually. Within each point cluster, a line is fit

from the first to last point, and the furthest perpendicular distance is calculated.

Perpendicular distance is compared to a distance threshold, if the distance is

less than the threshold, the line segment is passed on and the next set is

considered. Otherwise the set is segmented at that point and the process is

continued recursively until no more splits are performed. After the entire data set

28

is considered, collinear segments are merged [12, 29]. The Split-and-Merge

algorithm can be visualized in Figure 4.3.

Figure 4.3: Split-and-Merge Procedure [17]

Prior to Split-and-Merge, we rotate the point clusters by -π/2 radians such that y-

axis positive is bearing origin in the local robot frame using rotation matrix in

Equation 4.7.

�𝑥𝑥′𝑦𝑦′� = 𝑅𝑅𝜃𝜃 �
𝑥𝑥
𝑦𝑦� ;𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑅𝑅𝜃𝜃 = � cos 𝜃𝜃 sin𝜃𝜃

−sin𝜃𝜃 cos 𝜃𝜃� (4.7)

Any set that contains a single point is discarded, then the first and last points in

the cluster fitted to create a line. The points in the cluster are iterated through,

calculating the perpendicular distance; which is the shortest distance between

the fitted line and the point in question. [17]

29

𝑝𝑝𝑒𝑒𝑟𝑟𝑝𝑝.𝑑𝑑𝑖𝑖𝑠𝑠𝑑𝑑. = |(𝑦𝑦2−𝑦𝑦1)𝑥𝑥0−(𝑥𝑥2−𝑥𝑥1)𝑦𝑦0+𝑥𝑥2𝑦𝑦1−𝑦𝑦2𝑥𝑥1|
�(𝑦𝑦2−𝑦𝑦1)2+(𝑥𝑥2−𝑥𝑥1)2

 (4.8)

Here, the first point is (x1, y1), the second point is (x2, y2), and the point of interest

is (x0, y0).

The maximum perpendicular distance is identified along with the point index, to

compare with the distance threshold. If the largest distance is greater than the

specified tolerance, the line segment is split at this point and the two segmented

subarrays are passed back into itself and run recursively until no more splits are

made.

From the Split-and-Merge algorithm some remnants exist that are too short for

feature identification. To minimize the associated error, Euclidean distance is

employed to filter out any line segment that is less than a decimeter in length,

simultaneously filtering out any singular points as well.

Figure 4.4: Split-and-Merge Line Segments

30

The results from the Split-and-Merge algorithm are shown in figure 4.4, where point

clusters from the SEF have been converted into line segments. All three types of

features are present in this scan and will be discussed in the following section 4.3

feature extraction.

4.3 Feature Extraction

For a feature to be considered a landmark, it must meet important criteria. First it

must be highly visible so that the robot can observe it from any angle. Second, it

must be easily determined with simple geometries so that the LIDAR can detect

the feature repeatedly and reliably. Lastly, it must be unique such that the feature

will not be erroneously detected. In the beam tunnel there are three distinct

features that meet these criteria: corners, beam support structures, and the

tunnel wall. In this section, we will discuss the methods used to extract these

features from the line segments obtained from the previous section.

4.3.1 Corner Extraction

Corners are readily visible by LIDAR scans, and although fairly sparse, present

themselves as good landmark candidates. Given that the LIDAR scan has

already been processed into line segments, orthogonality can be calculated

using dot product as shown in Equation 4.9.

𝑙𝑙𝑛𝑛 ⋅ 𝑙𝑙𝑛𝑛+1 = �𝑙𝑙𝑛𝑛��𝑙𝑙𝑛𝑛+1� cos 𝜃𝜃 (4.9)

31

Where θ is the angle between ln and ln+1, translating to Equation 4.10 using dot

product cosine rule, also known as the sliding window corner detection [17].

𝜃𝜃 = 𝑎𝑎𝑐𝑐𝑎𝑎𝑠𝑠 � 𝑙𝑙𝑛𝑛⋅𝑙𝑙𝑛𝑛+1
�𝑙𝑙𝑛𝑛��𝑙𝑙𝑛𝑛+1�

� (4.10)

If the angle between line segments is within 0.03 radians the intersecting point

between them is calculated. The intersection point is found using determinants in

line-line intersection as shown in Equations 4.11 and 4.12.

𝑋𝑋𝑥𝑥 = �(𝑥𝑥1𝑦𝑦2−𝑦𝑦1𝑥𝑥2)(𝑥𝑥3−𝑥𝑥4)−(𝑥𝑥1−𝑥𝑥2)(𝑥𝑥3𝑦𝑦4−𝑦𝑦3𝑥𝑥4)
(𝑥𝑥1−𝑥𝑥2)(𝑦𝑦3−𝑦𝑦4)−(𝑦𝑦1−𝑦𝑦2)(𝑥𝑥3−𝑥𝑥4) � (4.11)

𝑋𝑋𝑦𝑦 = �(𝑥𝑥1𝑦𝑦2−𝑦𝑦1𝑥𝑥2)(𝑦𝑦3−𝑦𝑦4)−(𝑦𝑦1−𝑦𝑦2)(𝑥𝑥3𝑦𝑦4−𝑦𝑦3𝑥𝑥4)
(𝑥𝑥1−𝑥𝑥2)(𝑦𝑦3−𝑦𝑦4)−(𝑦𝑦1−𝑦𝑦2)(𝑥𝑥3−𝑥𝑥4) � (4.12)

The intersection point is the location of the corner feature, as derived from the

line segments.

4.3.2 Beam Support Structure Feature Extraction

Beam support structures are located frequently along the tunnel and have a fixed

position. The structures are all similar in their construction, I-beams mounted

back to back as can be seen in figure 4.5.

32

Figure 4.5: Simulated Beam Support Structure Feature

The protruding fins of the I-beams do not meet the length requirement set by the

Split-and-Merge algorithm and is filtered out. These features therefore resemble

consecutive collinear line segments.

To extract the feature, collinearity is checked using the following equality.

𝐴𝐴𝐴𝐴�����⃑ + 𝐴𝐴𝐵𝐵�����⃑ + 𝐵𝐵𝐷𝐷�����⃑ = 𝐴𝐴𝐷𝐷�����⃑ (4.13)

Where 𝐴𝐴𝐴𝐴�����⃑ is the first line segment, and 𝐵𝐵𝐷𝐷�����⃑ is the second line segment

representing the beam structure as can be seen in figure 4.6.

33

Figure 4.6: Beam Support Structure Line Segment Geometry

If the sum is approximately equal to 𝐴𝐴𝐷𝐷�����⃑ , a point is interpolated at the midway

point between the two-line segments, representing the beam support structure

position and is accepted as the feature.

4.3.3 Wall Feature Extraction

Because of the long distances travelled by the robot, heading error causes

significant Abbe error to accumulate, which contributes to the overall positional

error. Abbe error is the magnified positional deviation over a travelled distance

due to heading error, and can be calculated in Equation 4.14. [30]

𝜀𝜀 = 𝑑𝑑 tan𝜃𝜃 (4.14)

Where ε is the abbe error, d is the distance travelled, and θ is the heading error

of the robot as depicted in figure 4.6.

A

B
C

D

𝐴𝐴𝐴𝐴�����⃑

𝐵𝐵𝐷𝐷�����⃑

34

Figure 4.7: Abbe Error Illustration

Because the tunnel contains a long straight wall on one side of the beam tunnel,

it is used to constrain the Abbe error accumulation, providing an accurate

reference for the bearing of the robot. To accomplish this, the line segments

need to represent the wall with high confidence and spurious line segments need

to be removed from consideration. A series of validation gates are established to

ensure the spurious segments are not selected, which will cause divergence. The

first gate ensures the line segment is greater than three meters from robot origin

in the world map, which in the global map there are no other geometries other

than the tunnel wall from that distance from origin. The second gate checks the

length of the line segment by calculating the Euclidean distance from Equation

4.5 from point to point, and ensures it exceeds 2 meters before acceptance. The

line segment length is important because in the tunnel there is not a geometry

with a line segment length greater than 2 meters outside of the tunnel wall.

Between the two criteria, spurious segments are avoided and the line segment is

associated to the wall correctly.

If the line segment is believed to represent the wall, the robot bearing θ is

calculated using the atan2 function as shown in Equation 4.15.

35

 𝜃𝜃 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎2(𝑦𝑦2 − 𝑦𝑦1, 𝑥𝑥2 − 𝑥𝑥1) (4.15)

The bearing is held with high confidence and replaces the EKF prediction for

bearing as it was found to not be as accurate or frequent enough to prevent the

accumulated Abbe error.

4.4 Summary

From the LIDAR point cloud we were able to produce high accuracy line

segments that represent the beam tunnel using the SEF and Split-and-Merge

algorithms. It was found that these algorithms allow for some erroneous line

segments that had to be filtered out to promote robust feature extraction by

limiting line segment length.

By running the LIDAR in the simulation, features were selected by what could be

identified easily and repeatedly. From that knowledge, geometric principles were

applied to confirm the features as represented by line segments.

36

Chapter 5

Localization

Following the successful implementation of landmark acquisition and kinematics,

the Extended Kalman Filter (EKF) state estimation technique can be exploited to

achieve localization when paired with a data association algorithm. Data

association is an important step for maintaining accurate robot position. To

achieve data association, the Individual Compatibility Nearest Neighbor (ICNN)

algorithm is implemented as it works well with the EKF, utilizing similar principles.

The process is broken up into three primary steps: the prediction step of the EKF,

ICNN data association, and the measurement update of the EKF. The processes

of the EKF and ICNN algorithms will be discussed in this chapter.

5.1 Extended Kalman Filter

The Extended Kalman Filter (EKF) is a state estimation algorithm for non-linear

systems and consists of two primary steps: a prediction based on the motion

model, and a measurement update based on the measurement model. [6, 8, 9]

Figure 5.1 shows the block diagram representing the EKF.

37

Figure 5.1: Extended Kalman Filter Block Diagram

The EKF is a filter in the sense that it filters, or minimizes the Gaussian noise and

error in estimating the current state of the robot, linearizing the state transition

and measurement model about the mean and covariance of the current state.

The EKF became a prime candidate for localizing in the beam tunnel as it relies

on a map for the measurement model as a reference. Given that the beam tunnel

is a structured environment, landmark locations are easily identified as presented

in chapter 4.

38

5.1.1 Initialization

For the EKF to execute effectively, the initial conditions must be well known. The

initial conditions consist of the state matrix, and the error covariance matrix. The

state matrix consists of the robot position, heading, and landmark positions. The

state matrix is a 3+2n size column matrix where the first three rows represent the

robot state, and consecutive pairs are landmark positions and can be seen in

Equation 5.1. [5]

𝑋𝑋 =

⎣
⎢
⎢
⎢
⎡
𝑥𝑥𝑟𝑟
𝑦𝑦𝑟𝑟
𝜃𝜃𝑟𝑟
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖 ⎦
⎥
⎥
⎥
⎤
 (5.1)

The estimation error covariance matrix must be initialized as well, and is set to be

a 3+2n x 3+2n size identity matrix where n is the number of landmarks. The

matrix is set to identity so that the robot position and landmark locations are

independent initially and correlated as the robot observes landmarks.

5.1.2 Motion Update

The motion model from chapter 3, which produces the change in the robot state

using odometry, is used for the robot’s prediction step. From there we can derive

the predicted state transition matrix 𝜆𝜆(𝑋𝑋, 𝑢𝑢).

𝜆𝜆(𝑋𝑋, 𝑢𝑢) = 𝑋𝑋− = �
𝑥𝑥 + ∆𝑥𝑥
𝑦𝑦 + ∆𝑦𝑦
𝜃𝜃 + ∆𝜃𝜃

� = �
𝑥𝑥 + ∆𝑠𝑠 𝑐𝑐𝑎𝑎𝑠𝑠𝜃𝜃
𝑦𝑦 + ∆𝑠𝑠 𝑠𝑠𝑖𝑖𝑎𝑎𝜃𝜃
𝜃𝜃 + ∆𝜃𝜃

� (5.2)

39

To incorporate the predicted state transition matrix, it needs to be linearized. To

linearize, the Jacobian of the state transition matrix 𝜆𝜆(𝑋𝑋,𝑢𝑢) needs to be

calculated. The state transition Jacobian derivation is shown in Equation 5.3. [8]

𝐹𝐹 = 𝐽𝐽𝑓𝑓(𝑥𝑥,𝑦𝑦,𝜃𝜃) =

⎣
⎢
⎢
⎢
⎡
𝛿𝛿𝑋𝑋1
𝛿𝛿𝑥𝑥

𝛿𝛿𝑋𝑋1
𝛿𝛿𝑦𝑦

𝛿𝛿𝑋𝑋1
𝛿𝛿𝜃𝜃

𝛿𝛿𝑋𝑋2
𝛿𝛿𝑥𝑥

𝛿𝛿𝑋𝑋2
𝛿𝛿𝑦𝑦

𝛿𝛿𝑋𝑋2
𝛿𝛿𝜃𝜃

𝛿𝛿𝑋𝑋3
𝛿𝛿𝑥𝑥

𝛿𝛿𝑋𝑋3
𝛿𝛿𝑦𝑦

𝛿𝛿𝑋𝑋3
𝛿𝛿𝜃𝜃 ⎦
⎥
⎥
⎥
⎤

= �
1 0 −𝑠𝑠𝑖𝑖𝑎𝑎𝜃𝜃∆𝑠𝑠
0 1 𝑐𝑐𝑎𝑎𝑠𝑠𝜃𝜃∆𝑠𝑠
0 0 1

� (5.3)

The process noise Q, where C is a representation the odometry accuracy, is

formulated using Equation 5.4. [5]

𝑄𝑄 = 𝑊𝑊𝐵𝐵𝑊𝑊𝑇𝑇 = �
𝐵𝐵 ∆𝑥𝑥2 𝐵𝐵 ∆𝑥𝑥∆𝑦𝑦 𝐵𝐵 ∆𝑥𝑥∆𝜃𝜃
𝐵𝐵 ∆𝑦𝑦∆𝑥𝑥 𝐵𝐵 ∆𝑦𝑦2 𝐵𝐵 ∆𝑦𝑦∆𝜃𝜃
𝐵𝐵 ∆𝜃𝜃∆𝑦𝑦 𝐵𝐵 ∆𝜃𝜃∆𝑦𝑦 𝐵𝐵 ∆𝜃𝜃2

� (5.4)

𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑊𝑊 = �
∆𝑥𝑥
∆𝑦𝑦
∆𝜃𝜃
�

Next, the estimation error covariance matrix P becomes a crucial element to the

EKF procedure as it contains the covariance of the robot position, landmark

positions, the covariance between the robot and landmarks, and the covariance

between landmarks. The estimation error covariance matrix is built

systematically. The upper 3x3 matrix is the robot position covariance,

represented by Prr, and is updated by the odometry model as shown in Equation

5.5.

𝑃𝑃𝑟𝑟𝑟𝑟 = 𝐹𝐹𝑃𝑃𝑟𝑟𝑟𝑟𝐹𝐹 + 𝑄𝑄 (5.5)

40

The robot-landmark cross covariance Pri is located in the upper 3 rows of the

matrix, and is found using Equation 5.6. [9]

𝑃𝑃𝑟𝑟𝑖𝑖 = 𝐹𝐹𝑃𝑃𝑟𝑟𝑖𝑖 (5.6)

The covariance matrix P is symmetric and is defined in Equation 5.7. [9]

𝑃𝑃− = �𝑃𝑃
𝑟𝑟𝑟𝑟 𝑃𝑃𝑟𝑟𝑖𝑖
𝑃𝑃𝑖𝑖𝑟𝑟 𝑃𝑃𝑖𝑖𝑖𝑖

� (5.7)

Where Pii is the covariance of the landmark positions. Details on the state

transition can be found in references. [5, 8, 9]

5.1.3 Data Association

To reliably associate the robot’s sensor data to its environment, a couple of data

association methods were fused. First that of individual compatibility nearest

neighbor (ICNN), which is a widely used technique in robotics, and an

optimization algorithm developed in order to reconsider the best choice given the

ICNN criteria.

5.1.3.1 Individual Compatibility Nearest Neighbor

The derivation of the ICNN algorithm is based on comparing the extracted

features to the landmark map using Mahalonobis distance and then passing it

through a Chi-Squared validation gate which deems them compatible. The ICNN

41

is an n x m complex algorithm, where n is the number of landmarks in the map,

and m is the number of visible features. [21]

To initiate the ICNN algorithm, the measurement model must first be established.

The measurement model h for a range bearing model, where (𝜆𝜆𝑥𝑥,𝜆𝜆𝑦𝑦) are the

landmark locations, and is defined in Equation 5.8. [31]

ℎ = �
𝑟𝑟𝑎𝑎𝑎𝑎𝑔𝑔𝑒𝑒
𝑏𝑏𝑒𝑒𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎𝑔𝑔� = �

�(𝜆𝜆𝑥𝑥 − 𝑥𝑥)2 + �𝜆𝜆𝑦𝑦 − 𝑦𝑦�
2

tan−1 �𝜆𝜆𝑦𝑦−𝑦𝑦
𝜆𝜆𝑥𝑥−𝑥𝑥

� − 𝜃𝜃
� (5.8)

Taking the Jacobian of the predicted measurement model gives us H, which tells

us how the range and heading change with respect to the robot state (x, y, θ).

 𝐻𝐻 = �

𝛿𝛿𝑟𝑟
𝛿𝛿𝑥𝑥

𝛿𝛿𝑟𝑟
𝛿𝛿𝑦𝑦

𝛿𝛿𝑟𝑟
𝛿𝛿𝜃𝜃

𝛿𝛿𝛿𝛿
𝛿𝛿𝑥𝑥

𝛿𝛿𝛿𝛿
𝛿𝛿𝑦𝑦

𝛿𝛿𝛿𝛿
𝛿𝛿𝜃𝜃

� = �
𝑥𝑥−𝜆𝜆𝑥𝑥
𝑟𝑟

𝑦𝑦−𝜆𝜆𝑦𝑦
𝑟𝑟

0
𝜆𝜆𝑦𝑦−𝑦𝑦
𝑟𝑟2

𝜆𝜆𝑥𝑥−𝑥𝑥
𝑟𝑟2

−1
� (5.9)

The innovation µ is defined by the difference between the predicted landmark

locations h from Equation 5.10 and the LIDAR measurement z.

𝜇𝜇 = 𝑧𝑧 − ℎ (5.10)

The measurement noise R reflects the range and bearing error associated with

the LIDAR sensor. The measurement noise is represented by a 2x2 diagonal

matrix with the upper left value representing the range multiplied by the percent

error c in the distance, and the lower diagonal value representing the bearing

error. [5]

𝑅𝑅 = �𝑟𝑟𝑐𝑐 0
0 𝑏𝑏𝑑𝑑� (5.11)

42

Before the Mahalonobis distance between the measured features and landmark

map can be calculated, the innovation covariance must first be computed using

the Jacobian of the measurement model H, error covariance P, and the

measurement noise R.

𝑆𝑆 = 𝐻𝐻𝑃𝑃−𝐻𝐻𝑇𝑇 + 𝑅𝑅 (5.12)

The squared Mahalonobis distance can now be defined using the innovation and

associated covariance as shown in Equation 5.13. [21]

𝐷𝐷𝑖𝑖𝑖𝑖2 = 𝜇𝜇𝑇𝑇𝑆𝑆−1𝜇𝜇 (5.13)

Being that the Mahalonobis distance follows a Chi-Squared distribution, we

compare the calculated distance to a Chi-Squared distributed variate with two

degrees of freedom with a 95% cumulative probability α. [32]

𝐷𝐷𝑖𝑖𝑖𝑖2 < 𝜒𝜒𝑑𝑑,𝛼𝛼
2 (5.14)

If the validation gate is satisfied, the landmark-feature pair is passed to be a

highly probable match. The validation gate can pass more than one feature to

one landmark if features are dense or spurious. [33]

5.1.3.2 Compatibility Optimization

Because more than one feature can be associated to one landmark using the

ICNN, additional consideration is necessary. To rectify any spurious

associations, an optimal selection algorithm was developed. Optimization can

43

have a similar complexity to that of the ICNN, but typically is much smaller, as no

more than a couple of features are typically individually compatible with a

landmark.

Since the ICNN is a greedy algorithm, it never reconsiders potential matches,

instead accepting the first acceptable match which can be problematic. In the

developed algorithm, multiple feature matches are reconsidered such that the

minimum Maholanobis distance is taken as the associated feature to the

landmark in question.

5.1.4 Measurement Update

The robot state estimate obtained from the motion model is not reliable due to

the error attributed to the odometry. In order to compensate for these errors, the

landmark measurements associated to the landmark map is used to correct the

state.

The Kalman gain K is calculated as a weighted compensation between the

motion model prediction and measurement update.

𝐾𝐾 = 𝑃𝑃−𝐻𝐻𝑇𝑇(𝑆𝑆)−1 (5.15)

The robot state update can now be computed using the Kalman gain and

innovation. The process is repeated for each feature that has been matched to a

landmark using the ICNN algorithm, updating the feature map based on the

observations and motion model.

44

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋− + 𝐾𝐾𝜇𝜇 (5.16)

Lastly, the error covariance is updated to reflect the measurement update.

𝑃𝑃𝑡𝑡+1 = (𝐼𝐼 –𝐾𝐾𝐻𝐻)𝑃𝑃− (5.17)

The EKF state estimation localization has been defined, and is now repeated for

each subsequent LIDAR scan, constantly updating the robot state. Details on the

measurement update can be found in references [34, 35, 36].

5.2 Summary

A state estimation algorithm has been applied in the form of the EKF coupled

with the ICNN data association algorithm. The EKF creates error from the

odometry data due to slipping of the differential drive, and from poor bearing

estimation from the measurement update of the EKF due to low landmark density

in the tunnel. Tuning of the EKF to more heavily rely on the LIDAR

measurements was instituted, but was found to not be accurate enough to

reduce the bearing error to an acceptable level where Abbe error would not

accumulate. By neglecting the EKF bearing update and using the wall as a

bearing landmark when observed, error was reduced to a level where the EKF

would no longer diverge.

45

Chapter 6

Simulation

In this chapter the LabVIEW robotics module simulator and function library are

examined. The vehicle model, feature acquisition, localization concepts and

techniques are implemented using this software. Results from the simulator

testing is presented and the effectiveness of the techniques selected is reviewed.

6.1 LabVIEW Robotics

Due to availability and timing constraints in the beam tunnel, it was decided that

simulating the localization algorithm would be the best path forward to provide

validation and feasibility of deployment during beam production. Given that

LabVIEW software was already being used in conjunction with a National

Instruments cRIO to control the robot and the ability to go from the simulation to

hardware with few changes to the software, made the LabVIEW robotics module

simulator an attractive option. Therefore, it was selected as the robot simulation

package for the project. Included in the package is a robotics simulation

environment and function library.

The LabVIEW robotics simulator is based on the Open Dynamics Engine [37], a

physics-based library for simulating rigid body dynamics. The simulator consists

of three main aspects that allows the testbed to resemble the beam tunnel

46

environment; a CAD model importer, robot model builder, and the robotics

environment simulator wizard.

Prior to using the simulator, CAD models had to be created of both the beam

tunnel and the robot, which was done using SolidWorks. To import the CAD

models of the beam tunnel and the robot, unnecessary detail had to be removed

and the polygonal mesh had to be decimated to keep the file size limited and

allow the simulation to run efficiently. The CAD model importer was then used to

insert the robot and beam tunnel environment models into the LabVIEW robotics

simulator. The robot model builder allowed the addition of the robot chassis

selected, including the LIDAR sensor, joint definition for the differential drive

components, and an origin of axis. The environment in which the robot will

operate is also incorporated using the robotics environment simulator wizard,

where axes are specified and obstacles (similar to what would be seen in the

tunnel during normal operation) are added.

Figure 6.1: LabVIEW Robotics Simulation Front Panel

47

In addition to the simulator, the robotics module includes robotics specific

function libraries, facilitating rapid development of robot design [38]. Because of

the nature of the proposed localization strategy, all of the algorithms used had to

be developed from the ground up.

6.2 Simulation Results

Results of the LabVIEW robotics simulation will be discussed in this section, and

errors in the results will be addressed and analyzed. The EKF tested was

incorporated as discussed in chapter 5 with the sensors discussed in chapter 3.

To obtain results, the robot was operated through an environment similar to the

beam tunnel as it would during a typical deployment. A cross section of the beam

tunnel can be seen

As the robot traversed the beam tunnel it was able to consistently extract

features, and correctly associate them to the landmark map, thus updating the

robot state with relatively little error.

In order to gauge the effectiveness of the localization algorithm, Euclidean

distance is calculated between the estimated robot position and the ground truth

along with the absolute difference in heading as described by Chen and shown in

Equations 6.1 & 6.2. [8]

48

𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑝𝑝 = ��𝑥𝑥𝑟𝑟,𝑒𝑒 − 𝑥𝑥𝑔𝑔𝑡𝑡�
2

+ �𝑦𝑦𝑟𝑟,𝑒𝑒 − 𝑦𝑦𝑔𝑔𝑡𝑡�
2 (6.1)

𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝜃𝜃 = �𝜃𝜃𝑟𝑟,𝑒𝑒 − 𝜃𝜃𝑔𝑔𝑡𝑡� (6.2)

As can be seen in Figure 6.2 the positional error varies due to the odometry error

and increases in areas where landmarks are sparse. At the end of the sector,

where landmarks are dense, the positional error decreased significantly. For the

entire run, the greatest positional error accumulated was less than 0.3 meters.

Figure 6.2: Positional Error

The heading error is minimized by using the walls in the tunnel as described in

section 4.3.3. Without the wall extraction algorithm added to the EKF the heading

would diverge, contributing to the Abbe error in the robot position, causing the

EKF to diverge further. As shown in figure 6.3 the heading error grows when the

robot maneuvers 180 degrees at the end of the tunnel and no longer observes

the wall with the LIDAR as a reference but is then corrected once the wall is

observed again.

49

Figure 6.3: Heading Error

In the simulation, true robot position is known, which allows for algorithm

performance measurements as the estimated position can be measured against

the actual position providing absolute error for the robot state. The robot path

(blue) and the robot’s ground truth (green) is graphed in figure 6.4 using

Equations 6.1 and 6.2 to show the accuracy of the EKF as a localization method

in a mapped representation. Along with the robot path, the landmarks are

displayed to show how error grows when the robot is relying purely on odometry

data.

Figure 6.4: Ground Truth vs. Estimated Tracked Position

50

Chapter 7

Conclusion

The LabVIEW robotics simulator is used to demonstrate the viability of self-

localization in a known environment using LIDAR. The strategy and

implementation of the EKF, landmark extraction, and data association is

reviewed and the path forward for future work is discussed.

7.1 Summary

The objective of this thesis was to develop a self-localization strategy for a

differential drive robot in the LANSCE LINAC beam tunnel. Given the knowledge

about the environment in the tunnel, a decision had to be made to determine the

direction of the method of which localization was to be realized. After extensive

research and following various paths, the extended Kalman filter was chosen as

the best choice for the application as the positional estimator.

Implementation of the EKF as a state estimator for the robot in the simulator

shows potential with ideal conditions and well-known initial conditions. The robot

would show error accumulation between landmarks as they are fairly sparse in

the tunnel. It was also found that the EKF is sensitive to the heading of the robot

in maintaining its position regardless of landmark density. The Abbe error is

credited to the poor odometry accuracy of a differential drive robot during turning

51

maneuvers due to slippage. Heading error was kept to a minimum by making the

wall an absolute reference regardless of what the EKF estimated. With the Abbe

error minimized, the robot was capable of tracking its position with relatively low

error without diverging.

7.2 Future Work

With promising simulation results using the proposed strategy for localization,

testing in the tunnel on hardware would be the desired next step. Because the

simulated environment was stripped down, and relatively obstacle free, the actual

tunnel will need to be mapped to provide an accurate reference for the EKF to

use when implemented.

Future work will also include studies for facilitating full robot autonomy.

Navigation and obstacle avoidance studies are the two main focuses in achieving

autonomy past localization. In parallel with realizing autonomy, additional beam

diagnostic sensors will need to be studied in order to maximize the potential to

provide substantial measurements in determining beam status to operators as

well.

52

Appendix A

Localization Flowchart

53

Bibliography

[1] K.F. Schoenberg and P.W. Lisowski, “LANSCE A Key Facility for National Science and
Defense,” Los Alamos Science, no. 30, 2006.

[2] H. Watkins, D. Baros, D. Martinez, L Rybarcyk, J. Sedillo, and R. Valicenti, “Upgrades to
the LANSCE Isotope Production Facilities Beam Diagnostics,” Proceedings of IBIC2016,
Barcelona, Spain, 2016.

[3] C. Keatmanee, J. Baber, and M. Bakhtyar, “Simple Example of Applying Extended Kalman
Filter,” First International Electrical Engineering Congress, Thailand, March 2014.

[4] P. Jensfelt, Approaches to Mobile Robot Localization in Indoor Environments. PhD thesis,
Royal Institute of Technology, Stockholm, Sweden, 2001.

[5] S. Riisgaard and M.R. Blas, “Slam for Dummies,” A Tutorial Approach to Simultaneous
Localization and Mapping, vol. 22, June, pp. 1-127, 2004.

[6] J. Sola, “Simultaneous Localization and Mapping with the Extended Kalman Filter,”
unpublished. http://www.joansola.eu/JoanSola/eng/JoanSola.html

[7] H. Hu and D. Gu, “Landmark Based Navigation of Industrial Mobile Robots,”
International Journal of Industry Robot, vol. 27, no. 6, pp. 458-467, 2000.

[8] L. Chen, H. Hu, and K. McDonald-Maier, “EKF Based Mobile Robot Localization,”
Emerging Security Technologies (EST) Third Internationl Conference, Sept. 2012.

[9] N.A. Othman and H. Ahmad, “The Analysis of Covariance Matrix for Kalman Filter Based
SLAM with Intermittent Measurement,” Proceedings of the 2013 International
Conference on Systems, Control and Informatics, 2013.

[10] H.R. Everett, Sensors for Mobile Robotics Theory and Application. Wellesley
Massachusetts: A K Peters, Ltd., 1995.

[11] M. Lacroix, J. Santos, and R Stiffler, “Advantages of Magnetic Encoder Technology in
Harsh Operating Environments,” TIMKEN, North Canton, Ohio, Technical Report, Aug.
2011. https://www.timken.com/pdf/10416_EncodersWhitePaper.pdf

[12] V. Ngyen, A. Martinelli, N. Tomatis, and R. Siegwart, “A Comparison of Line Extraction
Algorithms using 2D Laser Rangefinder for Indoor Mobile Robotics,” In Proceedings of
Conference on IROS 2005, Edmonton, Canada, 2005.

[13] A. Siadat, A. Kaske, S. Klausmann, M. Dufaut, and R. Husson, “An Optimized
Segmentation Method for a 2D Laser Scanner Applied to Mobile Robot Navigation,” In
Proceedings of the 3rd IFAC Symposium on Intelligent Components and Instruments for
Control Applications, 2007.

54

[14] Y. Bu, H. Zhang, H. Wang, R. Liu, and K. Wang, “Two Dimensional Laser Feature
Extraction Based on Improved Successive Edge Following,” Applied Optics, May 2015.

[15] J. Lv, Y. Kobayashi, A.A. Ravankar, and T. Emaru, “Straight Line Segments Extraction and
EKF-SLAM in Indoor Environment,” Journal of Automation and Control Engineering, vol.
2 no. 3, Sept. 2014.

[16] M. Namoshe, O. Matsebe, and N. Tlale, “Feature Extraction: Techniques for Landmark
Based Navigation System,” Intech, 2010.

[17] G.A. Borges, and M.J. Aldon, “A Split and Merge Segmentation Algorithm for Line
Extraction in 2-D Range Images,” In Proceedings of 15th International Conference on
Pattern Recognition, Barcelona, Spain, Sept. 2000.

[18] A. Cooper, A Comparison of Data Association Techniques for Simultaneous Localization
and Mapping, MS thesis, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 2005.

[19] P.C. Mahalanobis, “On the Generalized Distance in Statistics,” In Proceedings of the
National Institute of Sciences of India, vol. 2, 1936.

[20] R. Gnanadesikan and J.R. Kettenring, “Robust Estimates, Residuals, and Outlier
Detection with Multiresponse Data,” Biometrics, Vol. 28, No. 1, pp. 81-124, Mar. 1972.

[21] J.A. Castellanos, J. Neira, and J.D. Tardos, “Map Building and SLAM Algorithms,”
Autonomous Mobile Robots: Sensing, Control, Decision Making and Applications, Lewis,
New York, New York, 2006.

[22] Dr. Robot, “Jaguar V2 User Guide,” Dr. Robot Inc, V.28.08.18, Available:
http://jaguar.drrobot.com/images/Jaguar_V2_Manual.pdf

[23] A. Bentley, B. Marohn, J. Mason, and B. Wooton, Beam Tunnel Monitoring Robot Final
Design, thesis, New Mexico Tech, Socorro, NM, 2012.

[24] Kamitani, Maeda, Mori, and Yamamoto, “Scanning Laser Range Finder URG-04LX-UG01
Specifications,” Hokuyo Automatic Co. LTD, June 2009.

[25] R. Siegwart and I.R. Nourbakhsh, Introduction to Autonomous Mobile Robotics,
Cambridge, Massachusetts: MIT Press, 2004.

[26] A. Kelly, Mobile Robotics Mathematics, Models, and Methods, Cambridge University
Press, 2014.

[27] R. Dhaouadi and A.A. Hateb, “Dynamic Modelling of Differential Drive Mobile Robots
using Lagrange and Newton-Euler Methodologies: A Unified Framework,” Advances in
Robotics and Automation, vol. 2, 2013.

[28] J.L. Crowley and P. Reignier, “Asynchronous Control of Rotation and Translation for a
Robot Vehicle,” Journal of Robotics and Autonomous Systems, Feb. 1993.

http://jaguar.drrobot.com/images/Jaguar_V2_Manual.pdf

55

[29] S. Yuan, L. Huang, F. Zhang, Y. Sun, and K. Huang, “A Line Extraction Algorithm for
Mobile Robot using Sonar Sensor,” Proceeding of the 11th World Congress on Intelligent
Control and Automation, Shenyang, China, June, 2014.

[30] R. Leach, “Abbe Error/Offset,” CIRP Encyclopedia of Production Engineering, 2014.

[31] T.Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of the EKF-SLAM
Algorithm,” Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Oct. 2006.

[32] Y. Bar-Shalom and T.E. Fortmann, Tracking and Data Association, Academic Press In.,
1988.

[33] J. Neira and J.D. Tardos, “Data Association in Stochastic Mapping using the Joint
Compatibility Test,” IEEE Transactions on Robotics and Automation, vol. 17, Issue 6, pp
890 – 897, Dec. 2001.

[34] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, Cambridge, Massachusetts: MIT
Press, 2006.

[35] H. Durrant-Whyte and T. Bailey, “Simultaneous Localization and Mapping,” IEEE Robotics
& Automation, June 2006.

[36] M.R. Nepali, D.A.H. Prasad, S. Balasubramaniam, V. EN, and Ashutosh, “A Simple
Integrative Solution for Simultaneous Localization and Mapping,” International Journal
of Robotics and Automation, vol. 5, Issue 2, 2014.

[37] “Overview of the LabVIEW Robotics Simulator,” National instruments, 22 December
2015, http://www.ni.com/white-paper/14133/en/

[38] “Overview of the LabVIEW Robotics Module,” National Instruments, 24 August 2016,
http://www.ni.com/white-paper/11564/en/

	1 Introduction 1
	1.1 Background . 1
	1.1.1 Accelerator Environment . 3
	1.2 Research Overview . 4

	Introduction
	Literature Review
	Vehicle Model
	Landmark Acquisition
	Localization
	Simulation
	Conclusion
	With promising simulation results using the proposed strategy for localization, testing in the tunnel on hardware would be the desired next step. Because the simulated environment was stripped down, and relatively obstacle free, the actual tunnel will...
	Future work will also include studies for facilitating full robot autonomy. Navigation and obstacle avoidance studies are the two main focuses in achieving autonomy past localization. In parallel with realizing autonomy, additional beam diagnostic sen...
	Localization Flowchart
	Bibliography

